Главная :: Архив статей :: Гостевая :: Ссылки

Наши друзья

Архивное дело: частный архив, поиск документов в архивах стран СНГ и Европы, генеалогия, составление родословных, архивные справки

Помощь сайту

WEB-Money:
R935344738975

Наша кнопка

XArhive - архив научно-популярных и просто интересных статей

Партнеры

Главная страница > Архив новостей

Среди претендентов на Х=приз пополнение

Джон Кармак (John Carmack), один из основателей компании Id Software и создатель таких легендарных компьютерных игр, как Doom и Quake, уже наигрался со своей коллекцией "Феррари" и вознамерился теперь побороться за так называемый X-приз. Куш размером $10 млн. должен достаться группе любителей, которая первой создаст пилотируемый космический корабль, способный совершить успешный полет с экипажем на борту.
"Понимаете, мне просто пришло в голову, — поясняет Кармак, — что за деньги, меньшие чем те, что я уже потратил на свои "Феррари" за прошедшее десятилетие, я мог бы построить себе персональный космический корабль". Кармак намерен бороться за приз в составе группы добровольцев, объединившихся в компанию под названием Armadillo Aerospace. Члены этой группы вот уже два года тайно работают над созданием космической ракеты. На Всемирном космическом конгрессе (World Space Congress), состоявшемся на прошлой неделе в г. Хьюстон, штат Техас, эта группа объявила, что вступает в борьбу за X-приз.
Среди конкурентов Armadillo — румынская Cosmonautics Romanian Association, обещающая построить такую ракету, какой отродясь не бывало. Всего за приз ведет борьбу 21 коллектив энтузиастов из разных стран мира, в том числе, россияне. Корабли со звучными именами, такими как Gauchito, Lucky Seven или, например, Green Arrow, согласно обещаниям создателей, будут использовать для взлета и посадки обычные аэродромы, привычные стартовые площадки или даже водную поверхность. Условия конкурса предполагают, что победителем станет тот, кто первым (но не позднее 1 января 2005 года) успешно отправит в космическое пространство на высоту не менее 100 км экипаж из трех человек. Затем в течение двух недель необходимо повторить это достижение все на том же аппарате. Времени остается все меньше, и разработчики спешат.
Один из них, аргентинец Пабло Де Леон, надеется запустить уменьшенную (в масштабе 2:1) модель своего аппарата Gauchito ("Маленький Ковбой") уже в начале 2003 года. "Мы не собираемся строить сверхсовременный космический корабль — только надежную и простую ракету и капсулу для экипажа с использованием широко распространенных технологий", — говорит он. Приз призом, а настоящая прибыль придет позднее, уверены разработчики прогулочных космических аппаратов. Индустрия космического туризма, зарождающаяся у нас на глазах, быстро набирает обороты. Опросы показывают, что только в одних США к 2021 году число потенциальных клиентов, способных оплатить суборбитальный полет, может достичь 15 тыс. человек. По данным маркетингового исследования, проведенного компанией Futron Corp., такой спрос может принести более $1 млрд.

(Cnews по материалам CNN).

Решена одна из задач тысячелетия

Индийский математик Винэй Деолаликар (Vinay Deolalikar) представил доказательства решения одной из так нызываемых задач тысячелетия, — ученый опубликовал 100-страничную статью, в которой сделан вывод, что классы сложности P и NP не равны. Препринт статьи в формате pdf можно скачать здесь, коротко о работе пишет New Scientist.

Вопрос о равенстве классов сложности P и NP можно сформулировать так: если положительный ответ на какой-то вопрос можно быстро проверить, то правда ли, что ответ на этот вопрос можно быстро найти? Эта задача чрезвычайно важна для компьютерных вычислений и прикладных наук, в частности для наук о шифровании данных. Например, если можно быстро проверить, является ли введенный шифр правильным, то можно ли достаточно быстро взломать этот шифр?

Доказательство, что классы сложности P и NP не равны, означает, что ответы на представленные выше два вопроса будут отрицательными. Иными словами, проверка шифра и его подбор являются задачами разного класса сложности.

В настоящее время экспертное сообщество не вынесло однозначного мнения по поводу статьи Деолаликара. Стоит ожидать, что оценки других математиков относительно строгости и правомерности доказательства начнут появляться после того, как будет опубликован окончательный вариант статьи. Планируется, что это произойдет в течение недели.

Задачи тысячелетия — это семь задач, за решение каждой из которых математический институт Клэя предлагает приз размером в один миллион долларов. Одной из таких задач было доказательство гипотезы Пуанкаре. Приз за решение этой задачи был присужден российскому математику Григорию Перельману, который, однако, отказался от денег, аргументировав это тем, что не согласен с решением института Клэя.

Главная :: Архив статей :: Гостевая :: Ссылки